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Abstract

This report aims to study the net power reduction that may occur with a fluid flowing past a wavy

wall (WW) at an oblique angle θ to the flow as compared to a reference flat-plate channel flow.

The analysis is done by comparing dissipation rates of WW and the spatial Stokes layer (SSL) via

linearised boundary layer equations. By prescribing the spanwise and streamwise wavelengths of

the WW walls k+0
z , k+0

x , along with a corresponding SSL forcing amplitude Ŵ+0
s that matches the

spanwise WW phase averaged shear with that of SSL, we are able to make assumptions to utilise

SSL data for the WW flow. This was done in Chernyshenko [1]. However, at the low Reynolds

number regimes for the SSL flow from which data were sourced (Reτ = 200), it is now believed

that there may be significant differences in the mean streamwise velocity profile, and therefore

changes the dissipation due to the mean profile, which was not considered in Chernyshenko [1].

Therefore this report attempts to correct for that by estimating the mean velocity profile

of WW flow with a linear and logarithmic portion in order to find the actual net power reduction

achieved by WW. It was found that there is a system of equations that uniquely solves for the net

power reduction for a given configuration by simply solving for the vertical displacement of the

logarithmic portion of the mean profile compared to the reference flow. However, this is contingent

on a proper estimate of the ratio of wall friction drag between WW and the reference flow τw,w
τw,0

,

which is not easily defined due to the presence of pressure drag in WW. By assuming pressure

drag is much smaller than total drag, we are able to close the system of equations to find that

drag reduction with WW is not actually achievable but rather the WW requires a minimum of

17.15% more power at Ŵ+0
s = 6 with λ+0

x ≈ 1200. However, there is compelling evidence for why

this result may be incorrect; although which step/assumption made caused this error remains to

be seen.
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Notation

A oscillation amplitude of spanwise wall velocity Ww (sometimes denoted Assl).

A+
g riblet groove area in wall units.

Aw wavy wall oscillation amplitude (sometimes denoted α).

B a constant in the logarithmic profile 1
κ ln y+ +B +∆h, it is equal to 5.0.

∆h the vertical increase in the logarithmic profile accompanying drag reduction 1
κ ln y++B+∆h.

h channel half height.

k wavenumber k = 2π
λ (any subscript denotes direction).

p pressure field, it is equal to its triple decomposition, which is P + p̃+ p′.

p mean pressure.

p̃ periodically fluctuating pressure field.

p′ randomly fluctuating pressure field.

Re Reynolds number, and is equal to UL
ν , a characteristic velocity U multiplied by a characteristic

length L divided by kinematic viscosity ν.

Reτ friction Reynolds number, defined using friction velocity uτ and channel half height h as the

characteristic velocity and length respectively.

s denoting the spatial Stokes layer (SSL) flow.

t time.

T oscillation period.

U velocity vector with components (U, V,W ), the triple decomposition thereof is U = U+ ũ+u′.

U x component of velocity (similarly V , W are the y, z components of velocity respectively).
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U mean velocity vector with components (U, V ,W ).

ũ phase averaged velocity vector with components (ũ, ṽ, w̃).

u′ randomly fluctuating velocity vector with components (u′, v′, w′).

ǔ+ part of phase average velocity in the x direction dependent on y̌+.

Û amplitude of the phase average oscillation in the x direction Ũ .

uτ friction wall velocity; it is equal to
√

τw
ρ .

w denoting the oblique wavy wall (WW) flow (note different from w, which denotes the variable

is measured at the wall).

w̌+ part of phase average velocity in the z direction dependent on y̌+.

Ŵ amplitude of the phase average oscillation in the z direction W̃ .

Ww spanwise wall velocity.

y̌+ equal to (k+x )
−1/3

y+.

y+× the crossing point between the linear profile U
+

= y+ and the logarithmic profile 1
κ ln y+ +

B +∆h.

0 denoting the reference channel flow.

α amplitude of the height of undulations of the wavy wall.

κ a constant in the logarithmic profile 1
κ ln y+ +B +∆h, it is equal to 0.41.

λ wavelength (any subscript denotes direction).

µ dynamic viscosity.

ν kinematic viscosity, defined as the ratio between dynamic viscosity and density µ
ρ .

ϕ phase along a wave or phase shift for WW.

Φ dissipation rate per unit area.

ρ fluid density.

τw wall shear stress.

θ oblique angle between wavy wall and streamwise direction.
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Chapter 1

Introduction

1.1 Motivation

Whether it be water in a pipeline, or an aircraft soaring through the skies, every fluid passing by a

solid and every solid passing through a fluid will experience drag. The ever pressing need to reduce

our impact on the environment requires us to reduce our energy used to combat unwanted drag,

which also has the added benefit of reducing costs via increased efficiency. This is especially true in

the transportation sector, which accounted for 24% of total global emissions in 2019 according to

the IEA, although growth has been limited to only 0.5% per year compared to an average increase

of 1.9% annually since 2000 owing to efficiency improvements [2].

The search for these efficiency improvements includes research towards drag reduction

(DR) via flow control – that is manipulating the flow characteristics in such a way that somehow

produces less overall drag. In fact, Ludwig Prandtl, who revolutionised the study of fluid mechanics

with the introduction of the turbulent boundary layer (TBL), pioneered modern flow control as

early as 1904, where he demonstrated that suction at the surface of a cylinder delays boundary

layer (BL) separation and therefore decreases drag [3, 4]. Indeed, DR is a major focus of research

in commercial aviation. In the context of aviation, a 1% reduction in drag corresponds to a 0.75%

reduction in fuel and as a result CO2 emissions [5]. In fact, Leschziner et al. [5] states that based on

estimates on travel demand in 2030, just a 1% reduction will constitute 9 million tonnes reduction

per year in CO2 emissions.

In transport applications, and in particular aviation, the flows are at high Reynolds

numbers Re, this means the regimes we are dealing with are often turbulent. Moreover, especially

in aviation (with the exception of cases where supersonic effects dominate), viscous drag generated

in the near-wall BL region constitutes a major component of total drag [6]. These two factors

combined mean that “flow control methodology targeting the TBL is the most obvious option to

achieve a significant skin-friction-drag reduction and ultimately to reduce emissions" [6].

Flow control is separated into two distinct groups, active and passive control. Active flow

control requires an input in energy to affect the flow via the use of actuators, whereas passive
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flow control does not. Examples of active control include opposition control [7, 8], spanwise-wall

oscillation [9–11], and the aforementioned BL separation control [4]; the former is closed-loop and

reacts to sensor inputs from the environment, whereas the latter two can be either open-loop with

predetermined control patterns or reactive (feedback/feed-forward systems). The actuators used

to perform active flow control can range from zero-net-mass-flux jets [12], to dielectric-barrier-

discharge plasma actuators [13], to fluid injection (blowing) and sucking [14], to the ingenious

moving surface using “pneumatically actuated compliant structure based on the kagome lattice

geometry” [15]. Whereas, examples of passive control include vortex generators [16], discontinuit-

ies/notches/fences in the leading/rear edges of a wing [16], compliant surfaces [17], porous coatings

[18], superhydrophobic surfaces [19], and a very well studied control technique known as riblets

[20–22].

As aforementioned, active flow control allows for reactive responses which can increase

the effectiveness of control techniques. Moreover, even open-loop flow control can often achieve

higher viscous drag reduction than passive control techniques without the need for sensors required

for reactive flow control. However, this comes at a cost of the extra energy expended to modify

the flow and the difficulty and innovation needed to design actuators. This can clearly be seen in

the case of spanwise-wall oscillation where the wall moves as prescribed by a streamwise travelling

wave, which, after accounting for the power spent to oscillate the fluid, has a net power saving of

around 26% despite a drag reduction of > 35% for those conditions [23]. Moreover, in order to

emulate in-plane wall motion in practice the aforementioned compliant structure from [15] had to

be created and trialled in laboratory conditions, and then made at scale and maintained if it were

to be used on real-world flows.

On the other hand, passive flow control is necessarily open-loop, and may have decreased

performance in comparison to active flow control. However, it does not require actuators and

the maintenance thereof. Riblets, for example, “are small surface protrusions aligned with the

direction of the flow, which confer an anisotropic roughness to a surface” [22] and can be seen

in Figure 1.1. Experiments show that under moderate adverse pressure gradient (i.e. where the

pressure increases along the direction of the flow) a 13% skin friction reduction is achievable,

compared to 6% reduction in a zero-pressure-gradient BL [24]. Although less efficient compared

to active control, due to its relatively simple design, its technology readiness level (TRL) is higher

than most other flow control techniques. In fact it has been trialled in scale model aircraft tests

at transonic Mach numbers [25], real aircraft tests, and even in commercial service for several

years by Cathay Pacific on an Airbus A340 where 30% of the wetted surface was covered with

riblets [26]. Based on a flight test on an Airbus A320 in transonic Mach number ranges, an A320

with 70% of the wetted surface covered by riblets could have a drag reduction of about 2% [27].

However, the optimal grove cross section was found to have an optimum at
(
A+

g

)1/2 ≈ 11, where

the + superscript denotes non-dimensionalisation by wall units (see Section 1.2.1) and spacing

of approximately 15 wall units [22]. This is equivalent to approximately 30–70 µm in realistic

aerofoil and aircraft flows [22]. Moreover, the sharper the riblets, the more efficient they are at
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reducing drag [22]. All of these factors make riblets quite hard to manufacture whilst requiring

maintenance/replacements due to the erosion from air moving past.

Figure 1.1: A schematic of triangular riblets; the most commonly researched riblets. Figure

modified from [28].

Therefore, researchers have begun to explore other ways to use passive flow control for

turbulent DR. The oblique wavy wall (WW) was first proposed by Chernyshenko [1] in 2013 to

emulate the motions of in-plane spanwise wall oscillations in hopes that there will be a net energy

decrease. We will devote the rest of this report discussing the merits of this curious passive flow

control method.

1.2 Literature Review

1.2.1 The Spatial Stokes Layer (SSL)

Description

The Stokes layer is one of the few known exact solutions to the Navier-Stokes equation describing

the motion of a viscous fluid as a function of the wall normal coordinate y, whereby the infinitely

long wall is located at the bottom at y = 0 and oscillating harmonically in its own plane [29]. It

turns out that the resulting oscillation in the fluid is only of significant magnitude very close to

the wall in a so-called “Stokes layer” and is significantly damped outside of the said-layer.

Jung et al. [9] were the first to suggest using a wall oscillating in the spanwise direction

to reduce skin friction in 1992, exploiting the above phenomenon to obtain a maximum drag

reduction of 40% at a non-dimensional period of T+ = 100 using direct numerical simulation

(DNS), a computational fluid dynamics (CFD) method [30]. The + superscript denotes non-

dimensionalisation by wall units, which is based upon the wall friction velocity uτ =
√

τw
ρ , along

with the kinematic viscosity ν = µ
ρ , where τw is the wall shear stress of the fluid flow, µ is the

dynamic viscosity of the fluid flow, and ρ is the density of the fluid.

The spanwise velocity of the wall for this in-plane oscillation is given by

Ww = A sin

(
2π

T
t

)
, (1.1)

where A and T denotes the oscillation amplitude and period, and t denotes time. Moreover,

when only one of the channel walls were oscillating, “the reduction in turbulence activity was
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observed only near the oscillating wall, while the flow at the other wall remained fully turbulent”

[9], showcasing the validity of the Stokes layer. In fact, when phase averaged this coincides with

the Stokes layer with temporal forcing [11], we will therefore name it temporal Stokes layer (TSL).

Dhanak and Si [31] observed that the duration of sweep events were reduced by 47% and their

strength reduced by 23%, suggesting that the skin-friction reduction is a result of the “attenuation

in the formation of streamwise streaks” [30].

As this is a form of active flow control, despite significant drag reductions, significant

energy must also be expended to overcome the extra shear stress to create the spanwise motion

of the fluid [11]. Baron and Quadrio [32] were the first to consider the net energy savings from

spanwise wall oscillation, and it is now accepted that the net energy savings is 10% [11, 30].

However, this technique requires moving parts and therefore requires actuators, which is hard to

implement in practical applications especially in transport applications.

Viotti et al. [11] sought to extend the TSL from a time-dependent forcing to a stationary,

spatial forcing, which potentially allows an extension into passive solutions which can emulate the

oscillation varying over space instead of time (such as the WW). Letting x be the streamwise

coordinate, y the wall-normal coordinate, and z the spanwise coordinate, the spatial forcing law

can be seen in Figure 1.2, and is given by

Ww = A sin

(
2π

λx
x

)
, (1.2)

where A and λx denotes the forcing amplitude and the forcing wavelength in the x direction

respectively. We will call this flow the spatial Stokes layer (SSL).

Figure 1.2: Schematic of spanwise wall forcing from [11].

Solving for Velocity

We will now analyse SSL flow analytically mostly following Chernyshenko [1], who ultimately

derives their analysis from Viotti et al. [11]. We begin by solving for the velocity profile of SSL

flow by first defining the triple decomposition of velocity as follows

U = U+ ũ+ u′, (1.3)
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where U is the velocity averaged over time and x − z space, ũ is the phase averaged velocity,

and u′ is the remaining stochastic turbulent part of the velocity. Unlike the traditional Reynolds

decomposition, we have an extra phase dependent term, which is useful for periodic flows such as

SSL flow. We can adapt the definition given in [33] to our case and define for some phase angle

ϕ0 = ϕ (x0 +mλx, z0 + nλz),

ũ (y, ϕ0) ≡ lim
M→∞

lim
N→∞

1

M

1

N

M∑
m=1

N∑
n=1

U (x0 + nλx, y, z0 +mλz)−U(y). (1.4)

By including this average, we recognise that there will be periodicity in the x component of the

flow velocity; we also include periodicity in the z component of the flow velocity since it will be

useful for the WW flow, and doesn’t affect the definition for the SSL flow, whose phase average

has no z dependence and therefore w̃ = 0.

Similarly, we can decompose the pressure field as we did velocity into its triple decompos-

ition with p = p+ p̃+p′, where p is the mean pressure (averaged in time, x−z space, and phase), p̃

is the periodically fluctuating phase averaged pressure, and p′ is the randomly fluctuating pressure.

With that definition, we can now solve for the phase averaged velocity of the SSL flow.

By linearising the BL equations in the wall units of the flow around a linear profile, we ignore the

stochastic fluctuations u′ and p′, and let U
+
= (y+, 0, 0). Moreover, SSL is time invariant. Thus,

by analysing the order of various values as in [29], and taking Re → ∞, we get

y+
∂ũ+

∂x+
+ ṽ+ = −∂p+

∂x+
+

∂2ũ+

∂ (y+)
2 (1.5)

0 = −∂p+

∂y+
(1.6)

y+
∂w̃+

∂x+
= −∂p+

∂z+
+

∂2w̃+

∂ (y+)
2 (1.7)

0 =
∂ũ+

∂x+
+

∂ṽ+

∂y+
+

∂w̃+

∂z+
. (1.8)

These are the general BL equations (also known as Prandtl BL equations) when linearised around a

linear mean profile (i.e. where we let U
+
= (y+, 0, 0)). Viotti et al. [11] showed that the analytical

solution to these equations for both TSL and SSL are basically the same as the fully turbulent

DNS simlations as long as we have the relevant scaling even with different forcing wavelengths.

At the wall (y+s = 0), we have ũ+s
s = ṽ+s

s = 0, and w̃+s
s = Ŵ+seik

+s
x x+s

, where Ŵ+s
s = A+s

is the wall oscillation amplitude, k+s
x = 2π

λ+s
x

is the non-dimensional wavenumber, i is the imaginary

unit, the subscript s denotes that the variable is related to SSL flow, and the superscript +s denotes

non-dimensionalisation by the friction velocity specific to the SSL flow uτ,s =
√

τw,s
ρ , where τw,s is

the time, space, and phase averaged wall shear stress of the SSL flow. Although strictly speaking

this w̃+s
s at the wall is only the real part of the exponential function (as well as any other phase

averaged terms that we prescribe the complex exponential function for the rest of this report),

however analysis is much more easily done using the exponential function and only taking the real

part thereof at the very end. Moreover, since the wall is flat, we expect the pressure gradient in

all directions to be zero. We also only expect the spanwise periodic fluctuations to be non-zero,
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therefore ũs = ṽs = 0. This means that to solve for w̃+s we only need Equation (1.7).

Finally, we expect the spanwise velocity to vary not only in x (due to the x dependence of

the prescribed spanwise wall forcing), but also in y as the Stokes layer decreases in strength away

from the wall. Therefore, we get

w̃+s (x+s, y̌+s) = Ŵ+s
s w̌+s

s eik
+s
x x+s

, (1.9)

where w̌+s
s = w̌+s

s (y̌+s) as the only part of w̃+s dependent on y̌+s, and defining y+ ≡ (k+x )
−1/3

y̌+

in order to simplify or equations later. Therefore Equation (1.7) becomes(
k+s
x

)−1/3
y̌+s ∂

∂x+s

(
Ŵ+sw̌+s

s eik
+s
x x+s

)
=

∂2

∂
(
(k+s

x )−1/3y̌
)2(Ŵ+sw̌+s

s eik
+s
x x+s

)
iy̌+sw̌+s

s =
d2w̌+s

s

d(y̌+s)2
. (1.10)

We can see that we can solve for w̌+s
s with only an ordinary differential equation (ODE). We know

that at y̌+s = 0, w̌+s
s = 1, and since this is a Stokes layer, we want w̌+s

s → 0 as y̌+s → ∞.

This ODE can either be solved numerically or be described by an Airy function (denoted Ai(·)) as

follows,

w̌+s
s (y̌+s) =

Ai
(
−iy̌+se−

4
3 iπ
)

Ai(0)
, (1.11)

which gives

w+s
s = Re

Ŵ+s
s eik

+s
x x

Ai
(
−iy̌+se−

4
3 iπ
)

Ai(0)

 . (1.12)

Net Power Definition

Our ultimate goal in this section is of course to find how much energy we might be able to save

using SSL. We will calculate the net power saved by having SSL in both the top and bottom wall

of an infinite flat channel (which was what was done in Viotti et al. [11] such that comparisons

can be made with DNS, which requires a finite domain), compared with a reference flat plate

channel flow with no wall movement. We will denote variables relating to the reference flow with

a subscript 0, and similar to the SSL flow, we will denote non-dimensionalisation by the wall units

of the reference flow with the superscript +0.

To find this elusive net power saving, we start with conservation of energy in the channel.

Thus,

P+
in = P+

out, (1.13)

where P denotes power per unit area. We know for SSL, Pin includes some sort of external pump

that powers the flow against drag (which we hope is reduced from the reference flow), as well as

an actuator or motor which drives the oscillatory in-plane wall motion. Whereas for the reference

flow Pin does not have the latter. On the other hand, the Pout of the system is assumed to be

purely through losses in heat, which comes from dissipation in the fluid, which, per unit area, is

given by

Φ+ =

∫ ∞

0

(
dU+

dy+

)2

dy+ , (1.14)
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for one wall, where the overbar denotes conducting averaging and phase averaging in time and

space in the x, z directions. Despite this being channel flow, we integrate to infinity instead of

the channel half height as the analysis is easier to deal with and it is presumed that dU+

dy+ → 0

quickly as y+ → ∞ outside the boundary layer. Using the incredibly useful triple decomposition,

the dissipation per unit area becomes

Φ+ =

∫ ∞

0

(
d

dy+

(
U

+
+ ũ+ + u′

))2

dy+ (1.15)

=

∫ ∞

0


(

dU

dy+

)2

+

(
dũ

dy+

)2

+

(
du′

dy+

)2

+ 2

�����������������:0(
dU

dy+
dũ

dy+
+

dU

dy+
du′

dy+
+

dũ

dy+
du′

dy+

) dy+

(1.16)

=

∫ ∞

0

(
dU

dy+

)2

dy+ +

∫ ∞

0

(
dũ

dy+

)2

dy+ +

∫ ∞

0

(
du′

dy+

)2

dy+ . (1.17)

Wonderfully, the cross terms inside the final brackets of 1.16 all go to zero since the over-bar for

dissipation involves both the mean averaging and phase averaging, and since ab = ab for any a, b,

and the average of a fluctuating quantity is zero. Moreover, the flows being considered throughout

the rest of the report do not have a mean velocity in the y or z direction, and dṽ+

dy+ ≈ 0 compared

to the other dissipation rates in the BL. We can therefore reduce the dissipation further to

Φ+ =

∫ ∞

0

(
dU

dy+

)2

dy+ +

∫ ∞

0

(
d

dy+
(ũ, ṽ, w̃)

)2

dy+ +

∫ ∞

0

(
du′

dy+

)2

dy+ (1.18)

=

∫ ∞

0

(
dU

dy+

)2

dy+ +

∫ ∞

0

(
dũ

dy+

)2

dy+ +

∫ ∞

0

(
dw̃

dy+

)2

dy+ +

∫ ∞

0

(
du′

dy+

)2

dy+ (1.19)

≡ Φ+

U
+Φ+

ũ +Φ+
w̃ +Φ+

u′ . (1.20)

For the reference flow Φ+0
0 = Φ+0

U,0
+ Φ+0

u′,0, whereas for the SSL flow Φ+s
s = Φ+s

U,s
+ Φ+s

w̃,s + Φ+s
u′,s.

Therefore we let the U and u′ portions of dissipation account for any reduction in drag, and the

extra w̃ portion of dissipation is accounted for via an extra required portion of energy for the SSL

flow.

Let us now define the net power reduction of the SSL channel flow as a percentage of the

reference channel flow as follows,

Pnet,s ≡ 100%
2Φ+0

0 − 2Φ+0
s

2Φ+0
0

(1.21)

= 100%
Φ+0

U,0
+Φ+0

u′,0 −
(
Φ+0

U,s
+Φ+0

w̃,s +Φ+0
u′,s

)
Φ+0

0

(1.22)

= 100%

(
Φ+0

U,0
− Φ+0

U,s

)
+
(
Φ+0

u′,0 − Φ+0
u′,s

)
Φ+0

0

+ 100%

(
0− Φ+0

w̃,s

)
Φ+0

0

(1.23)

= 100%
∆Φ+0

U,s
+∆Φ+0

u′,s

Φ+0
0

+ 100%
∆Φ+0

w̃,s

Φ+0
0

(1.24)

≡ Psav,s + Preq,s, (1.25)
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where Psav,s and Preq,s are the resulting power saved due to drag reduction and power required

to maintain forcing to counteract spanwise velocity gradients respectively; both are expressed as

a percentage of the power required to drive the reference flow. The definition here is numerically

equivalent to that of Viotti et al. [11], which defines them as a function of dimensional units.

Power Saved from SSL Wall Forcing

Psav,s was obtained from DNS results from Viotti et al. [11], which was again conducted at

Reτ = 200 using different forcing wavelengths λ+0
x , and forcing amplitudes Ŵ+0

s = 1, 2, 6, 12.

Chernyshenko [1] only used data up to λ+0
x < 3000, which was digitised via the web app WebPlot-

Digitizer, and fitted Psav,s at each Ŵ+0
s on a degree 5 polynomial of λ+0

x , i.e.

Psav,s = f
(
λ+0
x , Ŵ+0

s

)
(1.26)

= c0,Ŵ+0
s

+ c1,Ŵ+0
s

λ+0
x + c2,Ŵ+0

s

(
λ+0
x

)2
+ c3,Ŵ+0

s

(
λ+0
x

)3
+ c4,Ŵ+0

s

(
λ+0
x

)4
+ c5,Ŵ+0

s

(
λ+0
x

)5
,

(1.27)

where the coefficients are given in Table 1.1. The data and curve fits thereof are shown in Figure 1.3.

Ŵ+0
s c0 c1 c2 c3 c4 c5

1 1.135 0.002 929 −1.205× 10−6 1.447× 10−10 −1.047× 10−13 2.609× 10−17

2 −1.856 0.039 54 −5.285× 10−5 3.498× 10−8 −1.127× 10−11 1.328× 10−15

6 15.25 0.048 88 −4.441× 10−5 1.628× 10−8 −2.845× 10−12 1.938× 10−16

12 27.90 0.038 24 −2.810× 10−5 8.015× 10−9 −1.082× 10−12 5.535× 10−17

Table 1.1: Coefficients of curve fits of Psav,s data from DNS for different forcing wavelength λ+0
x

using different forcing amplitudes Ŵ+0
s by Viotti et al. [11]

Power Required to Drive SSL Wall Forcing

In order to find Preq,s, we begin by expressing∆Φ+0
w̃,s = −Φ+0

w̃,s in the wall units of the SSL flow. This

requires recognising that dissipation per unit area Φ has the units of power per unit area, which is

equivalent to velocity times force per unit area. This means that Φ+ is non-dimensionalised with

the relevant uττw. We will use that below to get

Φ+0
w̃,s =

Φw̃,s

uτ,0τw,0
(1.28)

=
Φw̃,s

uτ,sτw,s

uτ,sτw,s

uτ,0τw,0
(1.29)

= Φ+s
w̃,s

(
τw,s

τw,0

)3/2

. (1.30)
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Figure 1.3: Power saved due to drag reduction in the SSL flow, Psav,s, as a function of wall

forcing wavelength λ+0
x . The curve fits from Chernyshenko [1] and corresponding data from

Viotti et al. [11] are for forcing amplitudes Ŵ+0
s = 1, 2, 6, 12 which are in order from the bottom

to top curve. The figure is slightly modified from [1].

Now we will find Φ+s
w̃,s by using Equation (1.9) as follows

Φ+s
w̃,s =

∫ ∞

0

(
dw̃+s

s

dy+s

)2

dy+s (1.31)

=

∫ ∞

0

(
dŴ+s

s w̌+s
s eik

+s
x x+s

d
(
(k+s

x )−1/3y̌+s
) )2

d
((

k+s
x

)−1/3
y̌+s
)

(1.32)

=
(
Ŵ+s

s

)2 (
k+s
x

)1/3 ∫ ∞

0

1

2

∣∣∣∣dw̌+s
s

dy̌+s

∣∣∣∣2 dy̌+s . (1.33)

Since w̌+s
s is a known function that we found in Equation (1.11), it is possible to evaluate the

integral numerically. Chernyshenko [1] gives
∫∞
0

1
2

(
dw̌+s

s
dy̌+s

)2
dy̌+s = 0.3157. For the other two

terms, we wish to non-dimensionalise them with +0 units similar to Equation (1.30), as that is the

units that are presented in Viotti et al. [11], whose data we will use for calculating both Pnet,s and

Pnet,w. Thus,

k+s
x =

2π

λ+s
x

=
2π

λuτ,s/ν

uτ,0/ν

uτ,0/ν
=

2π

λ+0
x

(
τw,s

τw,0

)−1/2

, (1.34)

and

Ŵ+s
s =

Ŵs

uτ,s

uτ,0

uτ,0
= Ŵ+0

s

(
τw,s

τw,0

)−1/2

. (1.35)

The ratio of wall shear stress is incredibly useful, as by the definition of Psav,s, it is equivalent to

Psav,s = 100%
τw,0 − τw,s

τw,0
=⇒ τw,s

τw,0
= 1− Psav,s

100%
. (1.36)

Finally, we know that for the flat plate reference flow the dissipation on one side of the channel is

given by Φ+0
0 = U+0

b , where Ub is the bulk velocity (the time and space averaged velocity in the

channel) [1]. Definitionally, the coefficient of friction of a flow based on the bulk velocity is given
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by Cf = τw
1
2ρUb

= 2uτ

Ub
= 2

U+
b

. Therefore,

Φ+0
0 = U+0

b =

√
2

Cf,0
. (1.37)

DNS by Viotti et al. [11] at Reτ = 200 was in good correlation with the estimate Cf,0 =

0.0336Re−0.273
τ given by [34], where Reτ is the friction Reynolds number, defined using the friction

velocity uτ and channel half height h as the characteristic velocity and length respectively. As in

[1, 11], we will use this estimate. Thus, from the definition of Preq,s in Equation (1.25), and by

using Equations (1.30), (1.33), (1.34), (1.35), (1.36), and (1.37), we get

Preq,s = −100%
Φ+0

s

Φ+0
0

(1.38)

= −100%
(
Ŵ+0

s

)2√Cf,0

2

(
2π

λ+s
x

(
1− Psav,s

100%

))1/3 ∫ ∞

0

1

2

∣∣∣∣dw̌+s
s

dy̌+s

∣∣∣∣2 dy̌+s (1.39)

= −100%(0.3157)
(
Ŵ+0

s

)2√Cf,0

2

(
2π

λ+s
x

(
1− Psav,s

100%

))1/3

. (1.40)

By inserting Psav,s from Equation (1.27) for each Ŵ+0
s with the corresponding coefficients

from Table 1.1, we will find Preq,s, which we plot in Figure 1.4.
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- 60

- 40
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0Preq,s

λ+0
x

Figure 1.4: Power required to drive the forcing in the SSL flow, Preq,s, as a function of wall

forcing wavelength λ+0
x from Equation (1.40) at Ŵ+0

s = 6 (solid) and Ŵ+0
s = 12 (dashed) with

corresponding DNS data from Viotti et al. [11]. The figure is slightly modified from [1].

SSL Final Results

By using Equation (1.25), which says Pnet,s = Psav,s + Preq,s, the results for Ŵ+0
s along with its

corresponding DNS data are plotted in Figure 1.5. Based on these results of Viotti et al. [11] at

their parameters, it can be shown that a maximum net power decrease of 23% at Ŵ+0
s = 6 and at

λ+0
x = 1000− 1250.

Other results presented by Viotti et al. [11], include the clear modification of the near-wall

turbulence compared to the reference case, with much fewer turbulent vortical structures visible
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based on a λ+0
2 quantity introduced by Jeong and Hussain [35] that they set at −0.03 that we

will not discuss here. They also found a reduction of the turbulence intensity (the root-mean-

square of turbulent fluctuations). Most importantly for this project, they found that, like other

DR techniques (such as riblets), “[t]he DR manifests itself through the thickening of the viscous

sublayer, which results in the upward shift of the logarithmic portion of the velocity profile” [11].

This result will be explored later in this report.

0 500 1000 1500 2000

- 30

- 20
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0

10

20
Pnet

λ+0
x

Figure 1.5: Net power reduction Pnet as a function of wall forcing wavelength λ+0
x for SSL at

Ŵ+0
s = 6 (thin-dashes) corresponding DNS data from Viotti et al. [11], and for WW at prescribed

Ŵ+0
s = 2 (solid) and at Ŵ+0

s = 6 (thick-dashes). The figure is slightly modified from [1].

1.2.2 Analysis of The Oblique Wavy Wall (WW)

Description

As mentioned in Section 1.1, TSL and SSL are active control strategy, which requires actuators.

Several mechanisms are being trialed in laboratories experimentally to effect TSL or SSL such as

dielectric-barrier discharge plasma actuators [36], azimuthally moving pipe walls [37], etc. However,

as these actuators have low TRL, SSL was conjectured, analysed, and simulated via CFD mainly

so that a passive device (most likely via wall roughness) could emulate the flow patterns to affect

the TBL the same way to reduce drag. In fact, Viotti et al. [11] mentions a patent for riblets

that would oscillate sinusoidally in the streamwise direction [38]; the idea has been briefly studied

although the positive effects of small amplitudes “could not be determined outside the uncertainty

range”, whilst the larger amplitudes actually reduce the total drag reduction due to increase in

pressure drag [39]. The same authors claimed that a 1.3% drag reduction was possible [40] More

research should be done on that to better evaluate its viability.

In [1], Chernyshenko proposes instead to use an undulating wavy wall (WW) placed at

an oblique angle to the direction of the flow (Figure 1.6). Since this wavy wall is at an angle to the

streamwise direction, it creates a spanwise pressure gradient that accelerates it towards the crests
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when approaching them and also deccelerates it towards the crest when leaving them (i.e. it is

pushing against the adverse pressure gradient moving towards the troughs). This oscillatory force

that the fluid experiences generates alternating spanwise motion but also alternating streamwise

motion [41]. What is important is that the optimal wavelengths of the wavy wall are expected

to be much larger than the optimal spanwise spacing of riblets since Viotti et al. [11] found that

a forcing wavelength on the order of 1000 wall units were optimal for SSL, which WW is based

on. This means that manufacturing and maintenance of WW will likely be easier. A visualisation

of the SSL forcing and WW in Figure 1.7 shows the similarities (and differences) in the spanwise

oscillation. We will now follow Chernyshenko [1] in their calculation of the net power reduction of

WW, Pnet,w.

Figure 1.6: Schematic of the oblique wavy wall from [42]. The green arrow represents the flow

direction, at an oblique angle θ to the wavy wall.

Figure 1.7: An emulation of the forcing by SSL (left) and WW (right) showing mean streaklines

close to the wall, where the background is coloured according to the norm of the velocity vector.

Figure from [41]. Here Aw = α from Figure 1.6

Phase Averaged Velocity

To find the net power reduction we again start with the BL equations linearised around a linear

profile, Equations (1.5)–(1.8). However, since there are undulations along the wall, we will let the

y coordinate follow the contours of the wall. Hence by the no-slip and inpenetrability conditions,

we have that at the wall U+w
w = V +w

w = W+w
w = 0, and accordingly ũ+w

w = ṽ+w
w = w̃+w

w = 0
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at the wall. Unlike the SSL case, we now have variations in pressure. This pressure variation

is “proportional to the velocity at the outer edge of the boundary layer and to the displace-

ment magnitude” and occurs as a result of the displacement of streamlines caused by variations

in the shape of the wall surface, which “is passed with little change to the streamlines at the

outer edge of the boundary layer, where the flow velocity is large” [1]. This means that the

phase averaged pressure does not vary in the wall normal direction and can then be assumed

to have the form p̃+w
w = P̂+w

w ei(k
+w
x x+w+k+w

z z+w). The phase averaged velocity is a function of

x, y, z and is then (ũ+w
w , w̃+w

w , w̃+w
w ) =

(
Û+w

w (y), V̂ +w
w (y), Ŵ+w

w (y)
)
ei(k

+w
x x+w+k+w

z z+w). By sub-

stituting the above into the BL equations without the unnecessary y-momentum equation, (i.e.

Equations (1.5), (1.7), (1.8)), we get

ik+w
x y+wÛ+w

w + V̂ +w
w = −ik+w

x P̂+w
w +

d2Û+w
w

d (y+w)
2 (1.41)

ik+w
x y+wŴ+w

w = −ikzP̂
+w
w +

d2Ŵ+w
w

d (y+w)
2 (1.42)

ik+w
x Û+w

w +
dV̂ +w

w

dy+w + ik+w
z Ŵ+w

w = 0. (1.43)

Now we eliminate V̂ +w
w by substituting V̂ +w

w from Equation (1.41) into the second term of Equa-

tion (1.43) to get

ik+w
x Û+w

w +
d

dy+w

(
−ik+w

x y+wÛ+w
w − ik+w

x P̂+w
w +

d2Û+w
w

d (y+w)
2

)
+ ik+w

z Ŵ+w
w = 0 (1.44)

ik+w
x Û+w

w − ik+w
x

(
Û+w

w + y+w dÛ+w
w

dy+w

)
+

d3Û+w
w

d (y+w)
3 + ik+w

z Ŵ+w
w = 0 (1.45)

−ik+w
x y+w dÛ+w

w

dy+w +
d3Û+w

w

d (y+w)
3 + ik+w

z Ŵ+w
w = 0. (1.46)

We now let y+ = (k+x )
−1/3

y+, which we used in Section 1.2.1 when we solved for the

variation of spanwise velocity in y for SSL in order to make this calculation consistent with that

of SSL. Furthermore, Chernyshenko [1] calculated that by rescaling as

Û+w
w
(
y+w) = i

(
k+w
z

)2 (
k+w
x

)−5/3
P̂+w

w ǔ+w
w
(
y̌+w) , (1.47)

and

Ŵ+w
w
(
y+w) = ik+w

z

(
k+w
x

)−2/3
P̂+w

w w̌+w
w
(
y̌+w) , (1.48)

we can substitute into Equation (1.42) as

ik+w
x

[(
k+w
x

)−1/3
y̌+w

] [
ik+w

z

(
k+w
x

)−2/3
P̂+w

w w̌+w
w

]
= −ikzP̂

+w
w +

d2
[
ik+w

z (k+w
x )

−2/3
P̂+w

w w̌+w
w

]
d
((

k+w
x

)−1/3
y̌+w

)2 ,

and Equation (1.46) as

ik+w
x

[(
k+w
x

)−1/3
y̌+w

] d [i (k+w
z )

2
(k+w

x )
−5/3

P̂+w
w ǔ+w

w

]
d
((

k+w
x

)−1/3
y̌+w

) − ik+w
z

[
ik+w

z

(
k+w
x

)−2/3
P̂+w

w w̌+w
w

]

=
d3
[
i (k+w

z )
2
(k+w

x )
−5/3

P̂+w
w ǔ+w

w

]
d
((

k+w
x

)−1/3
y̌+w

)3 ,
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to get

iy̌+ww̌+w
w = −1 +

d2w̌+w
w

d (y̌+w)
2 (1.49)

d3ǔ+w
w

d (y̌+w)
3 = iy̌+w dǔ+w

w

dy̌+w − iw̌+w
w . (1.50)

This system has the boundary conditions dǔ+w

dy̌+w → 0 and w̌ → 0 as y̌+w → ∞, and ǔ+w = w̌+w = 0

and d2ǔ+w
w

d(y+w)2
=
(

k+w
x

k+w
z

)2
at y̌+w = 0. The final condition comes from solving Equation (1.41) at

y̌+w = 0 (where also V̂ +w
w = 0).

Since Equation (1.49) is decoupled from ǔ+w
w , we can solve it numerically for w̌+w

w . Then

to solve Equation (1.41), we decompose ǔ+w
w into

ǔ+w
w = ǔ+w

w,w +

(
k+w
x

k+w
z

)2

ǔ+w
p,w, (1.51)

with ǔ+w
w,w and ǔ+w

p,w satisfying

d3ǔ+w
w,w

d (y̌+w)
3 = iy̌+w dǔ+w

w,w

dy̌+w − iw̌+w
w , (1.52)

where dǔ+w
w,w

dy̌+w → 0 as y̌+w → ∞, and ǔ+w
w,w =

d2ǔ+w
w,w

d(y̌+w)2
= 0 at y̌+w = 0, and

d3ǔ+w
p,w

d (y̌+w)
3 = iy̌+w dǔ+w

p,w

dy̌+w , (1.53)

where dǔ+w
p,w

dy̌+w → 0 as y̌+w → ∞, and ǔ+w
p,w = 0, d2ǔ+w

p,w

d(y̌+w)2
= 1 at y̌+w = 0. Physically ǔ+w

w,w “corresponds

to the perturbation of [u+s
w ] due to wall-normal velocity induced by spanwise velocity dependence

on z” whereas ǔ+w
p,w “is related to the perturbation of [u+s

w ] due to the longitudinal pressure gradient

induced by the wall” [1]. These ordinary differential equations were then solved numerically by

Chernyshenko [1] using Mathematica.

Matching Spanwise Shear Profile with SSL

In order to use the results of Viotti et al. [11], Chernyshenko [1] had the idea to matching the

spanwise profiles between the SSL flow and the WW flow. In the ideal case, the spanwise velocities

would be matched. However, at the wall, w̃+s
s ̸= 0, whereas w̃+w

w = 0 at the wall, which means we

cannot possibly match the spanwise velocity profiles. So instead, they recognised that due to Ga-

lilean invariance, having similar motions in a different translated frame of reference will likely pro-

duce similar results. Therefore, instead the presumption was that having the same spanwise shear

might affect turbulence the same way, leading to drag reduction. Thus, Chernyshenko [1] sought

to match the SSL spanwise shear profile dw̃+s
s

dy+s = Ŵ+s
s

dw̌+s
s

dy̌+s e
ik+s

x x+s
which is equivalent with dw̃+0

s
dy+0 =

Ŵ+0
s

dw̌+0
s

dy̌+0 e
ik+0

x x+0

the WW spanwise shear profile dw̃+w
w

dy+s = ik+w
z (k+w

x )
−2/3

P̂+w
w

dw̌+w
w

dy̌+w ei(k
+w
x x+k+w

z z).

Dependence on z was neglected since k+w
z for the WW is expected to be much larger than the

characteristic scale of near wall turbulence. We know that streak spacing is around 100 wall units

and their streamwise length is around 1000 wall units [43]; whereas the spanwise and streamwise

wavelengths are expected to be on the same order, which from the SSL analysis in Section 1.2.1
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based on Viotti et al. [11] is expected to be around 1000 wall units for optimal performance. On

the contrary, a phase shift ϕ could be added between the SSL spanwise shear profile and that of the

WW, as it would still produce the necessary profiles just further down the flow in the streamwise

direction, since the thickness of the Stokes layer and the WW boundary layer are much smaller

than the channel half-height [41]. Therefore, matching the spanwise shear profiles with a phase

shift is equivalent to minimising the following equation

min


∫ ∞

0

∫ 2π

k
+
x

0

∣∣∣∣∣dw̌+s
s

dy̌+s e
ik+s

x x+s
− ik+w

z (k+w
x )

−2/3
P̂+w

w

Ŵ+s
s

dw̌+w
w

dy̌+w ei(k
+w
x x+w+ϕ)

∣∣∣∣∣
2

dx+ dy+

 (1.54)

over C =
ik+w

z (k+w
x )

−2/3
P̂+w

w

Ŵ+s
s

and ϕ. Minimisation gave Cmin = 0.8980 and ϕmin = 1.5708, which is

(interestingly) approximately π
2 . Thus, to match the spanwise shear profiles, the amplitude of the

periodic pressure field should be such that

P̂+w
w = Cmin

Ŵ+s
s

ik+w
z

(
k+w
x

)−2/3
. (1.55)

Note that the WW height is unknown a priori, therefore it is likely that it would have to be picked

by guessing, and trial and error via DNS, Reynolds Averaged Navier-Stokes (RANS) simulations,

or experiments to match the above periodic pressure field amplitude. The resulting spanwise shear

profile matching and its corresponding spanwise velocity are shown in Figures 1.8(a) and 1.8(b)

respectively.

Net Power Reduction for WW

Similar to the SSL flow discussed in Section 1.2.1, we will define the net power reduction as a

percentage of the power required to drive the reference channel flow as

Pnet,w ≡ Psav,w + Preq,w (1.56)

≡ 100%
∆Φ+0

U,w
+∆Φ+0

u′,w

Φ+0
0

+ 100%
∆Φ+0

ũ,w

Φ+0
0

, (1.57)

where ∆Φ+0

U,w
= Φ+0

U,0
− Φ+0

U,w
, ∆Φ+0

u′,w = Φ+0
u′,0 − Φ+0

u′,w, and unlike SSL, with two phase averaged

components ∆Φũ,w = − (Φũ,w +Φw̃,w). Unlike SSL, Preq is no longer the power required for the

actuator to create the spanwise forcing, but is instead the extra power required by the hypothetical

pump driving the main flow to overcome the phase averaged forcing in both the streamwise direction

and the spanwise direction, the latter of which we have previously attempted to match to SSL as

closely as possible.

Armed with the definition, it is known that at high Reynolds numbers, the differences in

U
+

is negligible. Therefore, in Chernyshenko [1], without even mentioning it specifically, it was

assumed that the difference in mean velocity profiles between the reference and controlled flows

were the same, i.e.
∆Φ+0

U,w

Φ+0
0

=
∆Φ+0

U,s

Φ+0
0

. Moreover, because of the matching of spanwise shear, it is

therefore assumed that the effects on the stochastic turbulence leading to drag reduction is the

same and therefore that ∆Φu′,w = ∆Φu′,s. Therefore, Chernyshenko [1] claimed that

Psav,w = Psav,s. (1.58)
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(a) Spanwise shear profiles.
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(b) Spanwise velocity profiles.

Figure 1.8: Spanwise shear (a) and velocity (b) profile comparison between SSL (solid) and WW

(dashed) using Re
{
w̌+s

s (y̌+s)eik
+s
x x+s

}
and Re

{
Cminw̌

+w
w (y̌+w)eik

+w
x x+w

}
respectively for

velocity, and their derivatives with respect to y̌+ for shear at k+
x x+

2π = 0, 1
6 ,

2
6 ,

3
6 ,

4
6 , and

5
6 from left

to right. Figure from [1].

However, we do expect some change in the net power usage due to the presence of chan-

ging pressure gradients. The difference in power reduction, therefore, comes in the Preq,w term.

According to Chernyshenko [1], for a given WW the dissipation due to phase averaged velocity

gradients are given by

Φ+w
ũ,w = k+w

z

(
k+w
x

)−2/3
P̂+w

w

∫ ∞

0

1

2

∣∣∣∣dǔ+w
w

dy̌+w

∣∣∣∣ dy̌+w, (1.59)

Φ+w
w̃,w = k+w

z

(
k+w
x

)−2/3
P̂+w

w

∫ ∞

0

1

2

∣∣∣∣dw̌+w
w

dy̌+w

∣∣∣∣ dy̌+w, (1.60)

. (1.61)

By selecting P̂+w
w using Equation (1.55), we are guaranteeing that Φ+w

w̃,w ≤ Φ+s
w̃,s. This

is because by optimising over C in Equation (1.54) “is equivalent to projecting the SSL solution

onto the direction of the wavy-wall solution in the L2 functional space” [1], i.e. it is equivalent

to projecting the SSL spanwise shear profile as a vector in the direction of that of WW, which is

necessarily equal or less than the magnitude of the SSL vector. To be safe in their calculations,

Chernyshenko [1] therefore assumed the maximum value of Φ+0
w̃,s+s which is equal to Φ+0

w̃,s. However,

it must be noted that Denison et al. [44] conducted DNS and experiments with WW which claimed
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that this linear model based on SSL actually “failed to predict the amplitude of spanwise shear stress

over the wavy wall, mostly due to a lacking account for the variation of the pressure perturbation

across the BL thickness”. This idea from Denison et al. [44] was not examined by us, but may

warrant future analysis. Nonetheless we proceeded with our analysis. Thus, we have

Preq,w = 100%
−
(
Φ+0

ũ,w +Φ+0
w̃,w

)
Φ+0

0

= −100%
Φ+0

ũ,w +Φ+0
w̃,w

Φ+0
w̃,w

Φ+0
w̃,s

Φ+0
0

=
Φ+w

ũ,w +Φ+w
w̃,w

Φ+w
w̃,w

Preq,s. (1.62)

Defining the squared norm ∥ · ∥2 ≡
∫∞
0

(·)2 dy, we can define a ratio r as follows

r ≡
Φ+w

ũ,w +Φ+w
w̃,w

Φ+w
w̃,w

=
∥Ŵ+w

w ∥2 + ∥Û+w
w ∥2

∥Ŵ+w
w ∥2

= 1 +

(
k+w
x

k+w
z

)−2 ∥ǔ+w
w,w +

(
k+w
x

k+w
z

)2
ǔ+w
p,w∥2

∥w̌+w
w ∥2

. (1.63)

Since they are fractions, the non-dimensionalisation by wall units here is unnecessary but included

for clarity. r, as it turns out, is only dependent on k+w
x

k+w
z

; numerically determining the norms, it was

found that

r = 3.122 + 2.323

(
k+w
x

k+w
z

)2

+ 0.7986

(
k+w
x

k+w
z

)−2

. (1.64)

By minimising r, we minimise Preq,w. This is given by

rmin = 5.846 at
k+w
x

k+w
z

|opt = 0.7657 =⇒ θopt = 52.56°, (1.65)

where θopt is the optimal oblique angle of the WW to the streamwise direction.

Finally, with Pnet,w = Psav,w + Preq,w = Psav,s + rPreq,s, and the known results of the

latter three terms from this section and Section 1.2.1, we can estimate the net power reduction

of th WW flow as compared to the reference flow. This is plotted in Figure 1.5 for the prescribe

Ŵ+0
s = 2, 6 for Psav,w = Psav,s. It was shown that Ŵ+0

s = 2 gives the best result at λ+0
x = 1520

of a net power savings due to drag reduction of 2.4% compared to the reference flow. Moreover,

DNS of the flow at Reτ ≈ 180 at approximately these optimal conditions gave r = 5.4 [42], which

is similar to that we found as rmin.

1.2.3 CFD Results of the Wavy Wall (WW)

Ghebali et al. [41] performed DNS of the WW at Reτ ≈ 360, which is incredibly computationally

expensive as it requires a large domain, especially since unlike SSL, the domain now has to ac-

commodate for the spanwise wavelength of the WW, which is an order of magnitude larger than

the spanwise spacing of streaks [1, 43]. This means that only a few configurations were tested,

and that so-far this is the only detailed numerical simulation of the WW. Another of less detail

was conducted by Denison et al. [44], along with experiments which were inconclusive based on

the repeatability of th experiments [41]. The change in Reτ as compared to that of Viotti et al.

[11], which used Reτ = 200, is assumed to not have significant impact on the optimal wavelength

[41]. Strangely, they found that as mesh size of the domain is refined, the predicted drag reduc-

tion decreases. The maximum net drag reduction was found to be 0.7% with a 2% friction drag

reduction and 1.3% pressure drag penalty, at a configuration of wall height amplitude α+w ≈ 20,
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WW angle θ = 70°, and WW streamwise wavelength λ+w
x ≈ 920 [41]. Although it “appears to

tend, asymptotically to a positive value of 0.6%” under the configuration of [41]. Higher friction

drag reduction by increasing height amplitude is possible, but comes at a great cost of pressure

drag. van Nesselrooij et al. [45] showed that dimpled surfaces for drag reduction cannot be too

high as separation occurs, what’s more is that the adverse pressure gradient becomes stronger,

which generates instabilities via different mechanisms therefore changing the total drag reduction.

This value of 0.6% was therefore thought to be the maximum possible net drag reduction, which

is significantly lower than the 2.4% predicted by Chernyshenko [1] with a different θ.

This discrepancy is believed to have potentially come from the assumption that Psav,w =

Psav,s. Gatti and Quadrio [46] examined the effects of Reynolds number on turbulent skin-friction

drag reduction using spanwise forcing. They found that at low Reynolds numbers, Reτ ≈ 200,

which is the regime for which these analyses were conducted, the vertical shift of the logarithmic

portion of the mean streamwise velocity profile did not stay constant. Therefore, it is believed that

the assumption that U
+w
w = U

+s
s is in fact untrue, and therefore the resulting change in dissipation

due to the mean profile is also false.

1.3 Problem Formulation

The main objective of this project is to be able to predict an estimate of the net drag reduction

(DR) due to the wavy wall (WW) for a given wavy wall prescribed by k+0
x , k+0

z , and the cor-

responding Ŵ+0
s at Reτ = 200 using only the curve fitted to Psav,s DNS data from Viotti et al.

[11]. A first attempt at this objective was already done by Chernyshenko [1], and relayed again in

Section 1.2.2 of this report. However, as outlined in Section 1.2.3, we believe there was an error

in the assumptions made; in that at these low Reynolds numbers the changes in dissipation due

to mean streamwise velocity profile between two similar flows cannot be ignored. This report will

therefore show our attempts to take the changes into account.
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Chapter 2

Project - Wavy Wall Analysis

2.1 Power Saved by the Wavy Wall (WW)

With our definition of Psav,w staying the same, we no longer believe it is equal to Psav,s. However,

since we matched the periodic spanwise shear, we still maintain that the reduction in stochastic

turbulent dissipation is the same between the wavy wall (WW) and spatial Stokes layer (SSL) flow,

i.e.
∆Φ+0

u′,s

Φ+0
0

=
∆Φ+0

u′,w

Φ+0
0

. Therefore,

Psav,w − Psav,s = 100%
∆Φ+0

U,w
+∆Φ+0

u′,w

Φ+0
0

− 100%
∆Φ+0

U,s
+∆Φ+0

u′,s

Φ+0
0

(2.1)

Psav,w − Psav,s = 100%
∆Φ+0

U,w
−∆Φ+0

U,s

Φ+0
0

(2.2)

Psav,w = 100%
Φ+0

U,w
− Φ+0

U,s

Φ+0
0

+ Psav,s. (2.3)

2.2 The Spatial Stokes Layer (SSL) Mean Velocity Profile

Since we do not know the shape of the WW mean streamwise velocity profile to figure out dissip-

ation due to the mean profile, we must start elsewhere. The SSL mean streamwise velocity profile

U
+s
s was given by Viotti et al. [11], along with that of temporal Stokes layer (TSL), the reference

channel flow, and U
+

= y+ for comparison (Figure 2.1). We can see that at y+ < 10, they all

coincide to the linear profile U
+
= y+, and at some point between 10 < y+ < 60, they stop being

curved on the logarithmic plot and become straight with similar slopes, indicating a logarithmic

profile at higher y+. In fact, like other drag reduction (DR) techniques (e.g. riblets), the DR

is noticeable as a thickening of the viscous sublayer causing an upward shift in this logarithmic

portion of the mean velocity profile [11, 47, 48].

In order to see the differences more clearly, the SSL and reference flow data from Figure 2.1

were digitised using the web app WebPlot-Digitiser. Then a curve fit was implemented and plotted

in Figure 2.2(a) using an analytical fit for a turbulent plane channel flows given in an unpublished

25



Figure 2.1: Streamwise mean velocity profiles in wall units averaged in x-z space, time, and phase

(U
+ ≡ ⟨u⟩+xzt) for SSL, TSL, the reference flow, and U

+
= y+ (dotted line) for comparison [11].

supplement to [49]. Abnormally, though, when the curve fit given for the mean streamwise velocity

was used, the derivative thereof fluctuated much more than expected at low y+. Therefore, the

curve fit for the second moments of velocity near the wall (root mean square velocity) was trialled

instead, which produced much more reasonable derivative whilst also maintaining a good curve fit

in and of itself. This latter curve fit is given as

y+
a (y+)

2
+ by+ + c

q (y+)
2
+ ry+ + 1

+ p
(
ln
(
y+ + 15

)
− ln(15)

)
, (2.4)

where a, b, c, p, q, r are some coefficients. This function, however, does not guarantee that dU+

dy+ = 1

at the wall, which would be most accurate. We can see again that at y+ < 10, the curves both

fit on the U
+
= y+ line. Then there is an area where the two curves diverge, but then, at around

y+ > 60, the gradients dU
+

dy+ seem to look fairly similar and in fact become negligible. This, as

Viotti et al. [11] had done, lead us to conjecture that the logarithmic portion of the SSL mean

velocity profile was the same as that of the reference flow but with an extra vertical shift.

Therefore, we take the well known logarithmic portion of the law of the wall, which applies

to the reference flow,

U
+0

0 =
1

κ
ln y+0 +B, (2.5)

where κ = 0.41, and B = 5.0 [29], and add a vertical shift ∆h to get

U
+s
s =

1

κ
ln y+s +B +∆hs. (2.6)

∆h can easily be estimated by drawing a straight line that follows the logarithmic portion of the

SSL mean profile (where y+ > 60 ) on the logarithmic scale (in Figure 2.1), reading the intercept

of said straight line, and subtracting by B. By this method it was found that ∆h ≈ 8. Curve fits

using Equations (2.5) and (2.6) are plotted in Figure 2.2(b).
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(a) Curve fits. (b) Estimated logarithmic profiles.

Figure 2.2: Both plots show data on the mean streamwise velocity profiles of SSL (orange-circle)

and the reference flow (blue-triangles) which were digitised from Viotti et al. [11] (shown in

Figure 2.1 and plotted on a linear scale, as well as U
+
= y+ (solid-line).

The validity of using the same logarithmic profile with vertical shift as an estimate can

be further seen in Figure 2.3, where the squares of the derivatives of the curve fits found using

Equation (2.4) were plotted for the SSL and reference flows. We can see that the differences in the

derivatives are negligibly small at y+ > 60. Moreover, since dissipation is equal to the integral of

this derivative from 0 to infinity, we can see that contributions at y+ > 60 are negligible. Whilst

we can only numerically integrate the curve fitted solution, we can actually analytically integrate

the estimated solution as

Φ+

U
=

∫ y+
×

0

∣∣∣∣dy+dy+

∣∣∣∣2 dy+ +

∫ ∞

y+
×

∣∣∣∣∣d
(
1
κ ln y+ +B +∆h

)
dy+

∣∣∣∣∣
2

dy+ (2.7)

=

∫ y+
×

0

1dy+ +
1

κ2

∫ ∞

y+
×

∣∣∣∣ 1y+
∣∣∣∣2 dy+ (2.8)

= y+× +
1

κ2

1

y+×
(2.9)

=

(
κy+×

)2
+ 1

κ2y+×
, (2.10)

where y+× is the single point at which the linear profile crosses the logarithmic profile. For SSL, we

can find the point where the linear profile and logarithmic profile meet by solving for y+s
×,s in

y+s
×,s =

1

κ
ln y+s

×,s +B +∆hs, (2.11)

where κ = 0.41, B = 5.0, ∆hs = 8. This gives y+s
×,s = 20.35. Which we can then substitute into

Equation 2.10 to get

Φ+s
U,s

=

(
κy+s

×,s
)2

+ 1

κ2y+s
×,s

= 20.64. (2.12)

In order to be useful in Equation (2.3), we must convert this into +0 units just as we did in
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Equation (1.30) as follows

Φ+0

U,s
= Φ+s

U,s

(
τw,s

τw,0

)3/2

= Φ+s
U,s

(
1− Psav,s

100%

)3/2

= 20.64

(
1− Psav,s

100%

)3/2

. (2.13)

Moreover, we find that for this estimated profile, the ratio
Φ+s

U,s

Φ+0

U,0

|est = 1.818, whereas the

same ratio for the curve fitted profile
Φ+s

U,s

Φ+0

U,0

|cfit = 1.650. The estimated ratio is only 10.1% higher

than that of the curve fitted solution. Therefore, the idea is that perhaps if we could model the

mean profile of the WW using the linear plus logarithmic profile approach, perhaps it would be

good enough to measure the net power reduction of the WW flow.

Figure 2.3: The squared mean streamwise shear profiles of SSL (dot-dash), and reference (dash)

flows, i.e. the squared derivative of mean streamwise velocity profiles dU
+

dy+ obtained using

Equation (2.4) for U
+
, which is shown in Figure 2.2(a).

2.3 Modelling the Wavy Wall (WW) Mean Velocity Profile

With Equation (2.6), Luchini [48] wrote that “an increment in [B (i.e. ∆h)] can be quantitatively

translated into drag reduction because [B ] appears explicitly in the drag formulae that” since we

can just integrate the mean velocity profile. For a turbulent boundary layer over a flat plate, the

friction formula is given by(
Cf

2

)−1/2

=
1

κ
ln

[(
Cf

2

)1/2

ReD

]
+ 2.2 +B, (2.14)

where ReD is based on the velocity boundary-layer thickness [50]. It turns out that for small

increments in B,
∆Cf

Cf,0
= − ∆h

(2Cf,0)
−1/2

+ κ/2
, (2.15)
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where ∆Cf = Cf − Cf,0 [48]. For WW, Pnet,w ≡ 100%
Cf,0−Cf,w

Cf,0
. Therefore,

−Pnet,w

100%
= − ∆hw

(2Cf,0)−1/2 + κ/2
(2.16)

∆hw =
Pnet,w

100%
[
(2Cf,0)−1/2 + κ/2

] . (2.17)

Thus, we believe the WW mean velocity profile can be modelled by

U
+w
w =


y+w, y+w ≤ y+w

×

1
κ ln y+w +B +

Pnet,w

100%[(2Cf,0)−1/2+κ/2]
, y+w > y+w

×

. (2.18)

By modelling the WW mean velocity profile like so, we can find Pnet,w as only a function

of y+w
× by solving the two cases as a system of equations, i.e. we let U

+w
w = y+w in the logarithmic

profile as follows

U
+w
w =

1

κ
ln y+w +B +

Pnet,w

100%
[
(2Cf,0)−1/2 + κ/2

] (2.19)

y+w
× =

1

κ
ln y+w

× +B +
Pnet,w

100%
[
(2Cf,0)−1/2 + κ/2

] (2.20)

Pnet,w = 100

(
y+w
× − 1

κ
ln y+w

× −A

)(
(2Cf,0)

− 1
2 +

κ

2

)
. (2.21)

Moreover, we can also employ Equation (2.10) combined with the wall unit conversions

just as Equation (1.30) to get

Φ+0

U,w
= Φ+w

U,w

(
τw,w

τw,0

)3/2

=

(
κy+×

)2
+ 1

κ2y+×

(
τw,w

τw,0

)3/2

. (2.22)

But there is a slight problem here. Previously, for τw,s
τw,0

, we have simply said this is equal to

1− Psav,s
100% in an SSL flow. However, in a WW flow, this is not necessarily the case. τw only involves

the frictional drag of the flow (the wall shear stress), but leaves out pressure drag which is present

in the WW due to the undulations which create pressure gradients. As of writing, the author

knows of no way to extract τw,w
τw,0

. The only solution was to turn to direct numerical simulation

(DNS) by Ghebali et al. [41]. Through their results we were able to find that although the drag

reduction and pressure drag reduction were of the same order, the pressure drag reduction was at

least an order of magnitude smaller than the total drag, i.e. we conjecture that pressure drag on

the WW is ≪ τw,w. Therefore, we let

Pnet,w ≈ 100%
τw,0−τw,w

τw,0
=⇒ τw,w

τw,0
≈ 1− Pnet,w

100%
, (2.23)

even though it isn’t necessarily true.

2.4 Net Power Reduction by Wavy Wall (WW)

2.4.1 Results

By accepting the assumption in Equation (2.23), quite accidentally, we have now stumbled upon

a closed set of equations for which we can solve numerically for a given λ+0
x , λ+0

z , and Ŵ+0
s . We
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start by recognising that nowhere in our analysis did we need to involve Preq,w = rminPreq,s, and

that minimising r still minimises Pnet,w. Therefore, rmin stays the same, and λ+0
x

λ+0
z

|opt stays the

same. Thus the closed set of equations is as follows

Pnet,w = Psav,w + rminPreq,s (2.24)

Psav,w = 100%

√
Cf,0

2

((
κy+w

×,w
)2

+ 1

κ2y+w
×,w

(
τw,w

τw,0

) 3
2

− Φ+0

U,s

)
+ Psav,s (2.25)

Pnet,w = 100%

(
y+w
× − 1

κ
ln y+w

× −B

)(
(2Cf,0)

− 1
2 +

κ

2

)
(2.26)

Preq,s = −100%
(
Ŵ+0

)2√Cf,0

2

(
2π(1− Psav,s/100%)

λ+0
x

) 1
3
∫ ∞

0

1

2

∣∣∣∣dw̌+s
s

dy̌+s

∣∣∣∣2 dy̌+s (2.27)

Psav,s = f
(
λ+0
x , Ŵ+0

s

)
(from Equation (1.27)) (2.28)

Φ+0

U,s
= 20.64

(
1− Psav,s

100%

)3/2

(2.29)

Cf,0 = 0.00336Re−0.273
τ , (2.30)

where ∆hs = 8, Reτ = 200, κ = 0.41, B = 5.0, rmin = 5.846, and
∫∞
0

1
2

∣∣∣dw̌+s
s

dy̌+s

∣∣∣2 dy̌+s = 0.3157.

This system is only a function of λ+0
x and Ŵ+0

s , so given those we only have to solve for y+w
× (which

is also equivalent to finding ∆h), which uniquely defines Pnet,w.

We solved this for Pnet,w as a function of λ+0
x for Ŵ+0

s = 1, 2, 6, 12 and plotted them in

Figure 2.4. The code for solving these equations, as well as others in this report, along with many

of the figures generated is in Appendix A. As we can see, this predicted a net power increase for

all cases. The minimum power increase compared to the reference flow was 17.15% for Ŵ+0
s = 6,

at λ+0
x ≈ 1200.

Figure 2.4: Calculated net power reduction for the wavy wall Pnet,w as a function of the

prescribed λ+0
x and SSL based Ŵ+0

s .
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2.4.2 Analysis

The high net power increase is surprising. Based on DNS results from Ghebali et al. [41], we believe

that the net power reduction should be around 0.6% at maximum, therefore it may be reasonable

that the maximum power reduction would be negative, but not < −15%. In fact, the solution to

these equations give a y+w
×,w ≈ 11. Moreover, if we manipulate the equations to solve for the SSL

flow instead, we also get a y+s
×,s ≈ 11, which is completely different from the predicted value of

≈ 20 and instead quite close to the reference y+×,00. This suggests that one or a few things may

have gone wrong in the production of our results.

One possibility is that our assumptions are incorrect. This includes the assumption made

in Equation (2.23), that τw,w
τw,0

= 1 − Pnet,w
100% . Another assumption made was the choice to use

Equation (2.15). This equation uses linear theory and thereby is only suitable for small increments

in logarithmic profile height. It is obvious that the logarithmic portion of the SSL profile is much

higher than one might consider “small.” One last major assumption that may have large impact on

our results was the idea of using two portions to approximate the mean velocity profile. Although

we found that when finding the ratio of
Φ+s

U,s

Φ+0

U,0

the percentage error was only around 10%; however,

in Equation (2.25), the denominator was instead the entire dissipation rate Φ+0
0 , where we would

then find that the percentage error was 33%.

The other possibility, is of course human error. Due to time constraints the algebra

and code were not checked as rigorously as it should be. It is for that reason that the entirety

of the algebra needed to reproduce the results presented along with the code used to do so (see

Appendix A) is given in this report. If you so wish, please feel free to find the mistake.
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Chapter 3

Conclusion

This report attempted to find the net power reduction resulting from using an oblique wavy wall

(WW) for a given wavy wall wavelength k+0
x , k+0

z , and corresponding spatial Stokes layer (SSL)

forcing amplitude Ŵ+0
s . Although this result was already given by Chernyshenko [1], it is believed

that their results ignored the effects of changing dissipation due to changing mean streamwise

velocity profiles at low Reynolds numbers (Reτ ≈ 200). Therefore, this project sought to rectify

this issue. However, it is believed that this attempt was not entirely successful and produced

erroneous results when compared to expectations from direct numerical simulation (DNS) of both

the SSL and WW flows. Nonetheless, there were three major results that could be drawn from

this project.

Firstly, in this report, we attempted to change the WW dissipation rate from the WW

wall units (+w) into the wall units of the reference channel flow (+0 ). However, it was found that

in order to do so it was necessary to know the ratio τw,w
τw,0

. In the SSL flow, this was not a problem

as the wall was flat and has no pressure drag, which means the total drag was equivalent to the

friction drag. Hence, τw,s
τw,0

= 1− Psav,s
100% . However, in the WW flow, we know there will be pressure

drag due to the presence of pressure gradients as a result of the wall shape, as a result, we do not

know how to express it as a function of other known variables in our system of equations. We can

only guess that it is approximately equal to 1 − Pnet,w
100% based on DNS results. Therefore, further

research must be done in order to find or approximate this ratio, or to check if our assumption that

the pressure drag is a small portion of total drag when compared to the reference flow is correct.

Secondly, we found that by modelling the mean streamwise velocity profile as two separate

portions (a linear and a logarithmic portion), the net power reduction of the WW flow, given

the parameters k+0
x , k+0

z , and Ŵ+0
s , is uniquely determined by the point at which the linear and

logarithmic portion meet y+×, and that this could likely be extended to other flows of drag reduction

given some tweaks in the equation. Moreover, y+× is also uniquely determined by the vertical height

shift ∆h of the logarithmic portion of the mean velocity profile. Ideally, we would be able to predict

purely with k+0
x , k+0

z , and α+0, the amplitudes of the WW waves themselves. However, this is not

possible with the current analysis which uses Ŵ+0
s and the wavelengths to determine the amplitude
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of periodic pressure fluctuations. Instead of knowing α+0 a priori, currently it must be found by

matching it to the correct pressure amplitude P̂+w
w . This also requires further research like that

of Ghebali et al. [41] and Denison et al. [44], although the former is the only detailed study to be

published.

Finally, the second point is subject to the ratio of wall friction drag in point one being

correctly defined. Without knowing the ratio, the system of equations is not closed, and we are

unable to determine the net power reduction of the WW flow. Therefore, we believe that knowing

this ratio (exactly or approximately) is of importance to solving our central problem.

In all, with a guess of the approximation of the wall friction drag ratio, we did not find

a net power reduction for the WW flow but rather a net power addition of 17.15% to drive the

flow. It is believed that this value is erroneous and further research into our assumptions and any

human errors is needed before we can conclude the actual net power savings of the wavy wall flow

at these Reynolds numbers where the differences in mean profiles are significant.
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Appendix A

Code

Listing A.1: The following code is written in Python and is used to solve equations, as well as

print figures.

import math

import numpy as np

import matp lo t l i b

matp lo t l i b . rcParams [ ’ t ex t . usetex ’ ] = True

import matp lo t l i b . pyplot as p l t

import sympy as sym

import s c ipy . i n t e g r a t e as i n t e g r a t e

from s c ipy . opt imize import curve_f i t

from s c ipy . opt imize import f s o l v e

#import d i g i t i s e d data

s s l = np . genfromtxt ( ’SSL . csv ’ , d e l im i t e r=’ , ’ )

r e f = np . genfromtxt ( ’ r e f e r e n c e . csv ’ , d e l im i t e r=’ , ’ )

#dec l a r e cons tan t s

r_m = 5.846

C_f0 = 0.0336∗(360∗∗( −.273) )

Phi0inv = math . s q r t (C_f0/2)

k = 0.41

B = 5.0

d i s s_ int = 0.3157

What = np . array ( [ 1 , 2 , 6 , 1 2 ] )

Psav_ss l_coef f = np . array ( [

[ 1 . 1 3 5 , 0 .002929 , −1.205E−6, 1 .447E−10, −1.047E−13, 2 .609E−17] ,

[ −1.856 , 0 .03954 , −5.2854E−5, 3 .498E−8, −1.127E−11, 1 .328E−15] ,
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[ 1 5 . 2 5 , 0 .04888 , −4.441E−5, 1 .628E−8, −2.845E−12, 1 .938E−16] ,

[ 2 7 . 9 0 , 0 .03824 , −2.810E−5, 8 .015E−9, −1.082E−12, 5 .535E−17]

] )

#func t i on f o r curve f i t t i n g

def f i t (x , a , b , c , q , r , p ) :

return ( x ∗ ( a ∗(x∗∗2) + b∗x + c ) /(q∗(x∗∗2) + r ∗x + 1) ) + p ∗ (np .

l og (x+15)−np . l og (15) )

#symbo l i c f i t t e d curve f o r sym . l o g i f needed

def symf i t (x , a , b , c , q , r , p ) :

return ( x ∗ ( a ∗(x∗∗2) + b∗x + c ) /(q∗(x∗∗2) + r ∗x + 1) ) + p ∗ (sym .

l og (x+15)−sym . log (15) )

#loga r i t hm i c p r o f i l e

def l og law (x , h) :

return (1/k ) ∗ np . l og (x ) + B + h

def symloglaw (x , h) :

return (1/k ) ∗ sym . log (x ) + B + h

#for s o l v i n g \ o v e r l i n e {U}^{+}=y^{+} and l o ga r i t hm i c p r o f i l e

def l i n l o g (x , ∗h) :

return [ l og law (x [ 0 ] , h ) − x [ 1 ] , x [0] −x [ 1 ] ]

#dec l a r e f i g u r e

p l t . f i g u r e ( f i g s i z e = [ 5 , 3 . 7 5 ] , dpi=246)

#separa t e arrays and p l o t d i g i t i s e d po in t s o f mean p r o f i l e

x_ssl = s s l [ : , 0 ]

y_ssl = s s l [ : , 1 ]

p l t . p l o t ( x_ssl , y_ssl , mfc=’ none ’ , mec=’ tab : orange ’ , marker=’ o ’ ,

markers i ze=6, l i n e s t y l e=’ none ’ , l a b e l=’SSL ’ )

x_ref = r e f [ : , 0 ]

y_ref = r e f [ : , 1 ]

p l t . p l o t ( x_ref , y_ref , mfc=’ none ’ , mec=’ tab : b lue ’ , marker=’^ ’ ,

markers i ze=6, l i n e s t y l e=’ none ’ , l a b e l=’ r e f ’ )

#e s t a b l i s h p l o t t i n g l i n s pa c e
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xspace_ss l = np . l i n s p a c e ( 0 . 5 , 1 09 , num=250)

xspace_ref = np . l i n s p a c e ( 0 . 5 , 1 98 , num=600)

#curve f i t and p l o t s s l and r e f e r ence f l ow

popt_ssl , pcov_ssl = curve_f i t ( f i t , x_ssl , y_ssl , maxfev = 5000)

p l t . p l o t ( xspace_ssl , f i t ( xspace_ssl , ∗ popt_ssl ) , ’ k−. ’ , l i n ew id th =1.5 ,

l a b e l=’SSL␣ curve ␣ f i t ’ )

popt_ref , pcov_ref = curve_f i t ( f i t , x_ref , y_ref , maxfev = 5000)

p l t . p l o t ( xspace_ref , f i t ( xspace_ref , ∗ popt_ref ) , ’ k−−’ , l i n ew id th =1.5 ,

l a b e l=’ r e f ␣ curve ␣ f i t ’ )

#p l o t \ o v e r l i n e {U}^{+}=y^{+}

p l t . p l o t (np . l i n s p a c e ( 0 . , 3 0 . , num=50) ,np . l i n s p a c e ( 0 . , 3 0 . , num=50) , ’ k−’ ,

l i n ew id th =1.5 , l a b e l=r ’ $\ o v e r l i n e {U}^+=y^+$ ’ )

p l t . x l ab e l ( r ’ $y^+$ ’ )

p l t . y l ab e l ( r ’ $\ o v e r l i n e {U}^+$ ’ )

#p l o t graph

p l t . l egend ( l o c=4)

p l t . g r i d ( )

#new graph f o r es t imated l o g law

p l t . f i g u r e ( f i g s i z e = [ 5 , 3 . 7 5 ] , dpi=246)

p l t . p l o t ( x_ssl , y_ssl , mfc=’ none ’ , mec=’ tab : orange ’ , marker=’ o ’ ,

markers i ze=6, l i n e s t y l e=’ none ’ , l a b e l=’SSL ’ )

p l t . p l o t ( x_ref , y_ref , mfc=’ none ’ , mec=’ tab : b lue ’ , marker=’^ ’ ,

markers i ze=6, l i n e s t y l e=’ none ’ , l a b e l=’ r e f ’ )

#p l o t l o g law es t ima t e s

de lh_ss l = 8

p l t . p l o t ( xspace_ssl , log law ( xspace_ssl , de lh_ss l ) , ’ k−. ’ , l i n ew id th

=1.5 , l a b e l=r ’SSL␣Log␣ P r o f i l e ’ )

p l t . p l o t ( xspace_ref , log law ( xspace_ref , 0) , ’ k−−’ , l i n ew id th =1.5 , l a b e l

=r ’ Ref␣Log␣ P r o f i l e ’ )

p l t . x l ab e l ( r ’ $y^+$ ’ )

p l t . y l ab e l ( r ’ $\ o v e r l i n e {U}^+$ ’ )

#p l o t \ o v e r l i n e {U}^{+}=y^{+}
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p l t . p l o t (np . l i n s p a c e ( 0 . , 3 0 . , num=50) ,np . l i n s p a c e ( 0 . , 3 0 . , num=50) , ’ k−’ ,

l i n ew id th =1.5 , l a b e l=r ’ $\ o v e r l i n e {U}^+=y^+$ ’ )

#p l o t graph

p l t . l egend ( l o c=4)

p l t . g r i d ( )

#symbol f o r d i f f e r e n t i a t i o n

x = sym . symbols ( ’ x ’ )

#d i f f e r e n t i a t e and square curve f i t s

d i f f _ s s l = sym . d i f f ( symf i t (x , ∗ popt_ssl ) , x )

d i f f s r _ s s l = d i f f _ s s l ∗∗2

d i f f_ r e f = sym . d i f f ( symf i t (x , ∗popt_ref ) , x )

d i f f s r_ r e f = d i f f_ r e f ∗∗2

#p l o t d e r i v a t i v e s squared by l ambd i f y ing

d i f f s r_ss l_ lm = sym . lambdify (x , d i f f s r_ s s l , modules=’numpy ’ )

d i f f s r_re f_lm = sym . lambdify (x , d i f f s r_ r e f , modules=’numpy ’ )

p l t . f i g u r e ( f i g s i z e = [ 5 , 3 . 7 5 ] , dpi=246)

p l t . p l o t ( xspace_ssl , d i f f s r_ss l_ lm ( xspace_ss l ) , ’ k−. ’ , l a b e l=’SSL ’ )

p l t . p l o t ( xspace_ref , d i f f s r_re f_lm ( xspace_ref ) , ’ k−−’ , l a b e l=’ r e f ’ )

p l t . g r i d ( )

p l t . l egend ( )

p l t . x l ab e l ( r ’ $y^+$ ’ )

p l t . y l ab e l ( r ’ $\ l e f t (\ f r a c {d\ ov e r l i n e {U}^+}{dy^+}\ r i gh t )^2$ ’ )

max_range = 60

min_range = 0

#so l v e where l o g law es t imate p r o f i l e i n t e r s e c t s u^+=y^+

s s l_c r o s s = f s o l v e ( l i n l o g , [ 1 1 , 1 1 ] , a rgs=(de lh_ss l ) )

r e f_c ro s s = f s o l v e ( l i n l o g , [ 1 1 , 1 1 ] , a rgs =(0) )

#in t e g r a t e e s t imate a n a l y t i c a l l y

in_est_ss l = s s l_c r o s s [ 0 ] + (1/ ( . 41∗∗2 ) ) ∗ (1/ s s l_c r o s s [ 0 ] )

in_est_ref = re f_cro s s [ 0 ] + (1/ ( . 41∗∗2 ) ) ∗ (1/ r e f_c ro s s [ 0 ] )

print ( s s l_c r o s s [ 0 ] , r e f_c ro s s [ 0 ] , in_est_ss l , in_est_ref )

#in t e g r a t e curve f i t numer ica l l y
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i n_ss l = i n t e g r a t e . quad ( d i f f s r_ss l_lm , min_range , max_range )

in_re f = i n t e g r a t e . quad ( d i f f s r_re f_lm , min_range , max_range )

print ( in_ss l , in_re f )

#pr in t out r a t i o s f o r comparison

in_est_rat = in_est_ss l / in_est_ref

in_rat = in_ss l [ 0 ] / in_re f [ 0 ]

print ( in_est_rat , in_rat , in_est_rat / in_rat )

in_est_rat = in_est_ss l /Phi0inv

in_rat = in_ss l [ 0 ] / Phi0inv

print ( in_est_rat , in_rat , in_est_rat / in_rat )

#de f i n e f unc t i on s to s o l v e f o r P_{net ,w}

def Psav_ssl ( lm , c o e f f ) :

a , b , c , d , e , f = c o e f f

return a + b ∗ lm + c ∗ ( lm∗∗2)+ d ∗ ( lm∗∗3) + e ∗ ( lm∗∗4) + f ∗ (

lm∗∗5)

def Preq_ssl ( lm , i ) :

return −100∗ d i s s_ int ∗Phi0inv ∗(What [ i ] ∗ ∗2 ) \

∗((1−Psav_ssl ( lm , Psav_ss l_coef f [ i ] ) /100) ∗2∗math . p i /lm)

∗∗(1/3)

def Pnet_ww_ycross ( yc ro s s ) :

return 100∗( ycross −(1/k ) ∗np . l og ( yc ro s s )−B) ∗((2∗C_f0) ∗∗(−1/2)+k/2)

def Psav_ww( ycross , tau_rat , lm , i ) :

return 100∗( Phi0inv ∗ ( ( ( ( k∗ yc ro s s ) ∗∗2 + 1) /( yc ro s s ∗(k∗∗2) ) ) ∗.9∗(1−

tau_rat /100) ∗∗(3/2) \

−in_est_ss l ∗((1−Psav_ssl ( lm , Psav_ss l_coef f [ i ] ) /100) ∗∗(3/2)

) ) )+Psav_ssl ( lm , Psav_ss l_coef f [ i ] )

def P_solve ( z , ∗data ) :

index , lmd = data

Pnw = z [ 0 ]

Psw = z [ 1 ]

ycr = z [ 2 ]

return [Pnw−Psw−r_m∗Preq_ssl ( lmd , index ) ,
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Pnw−Pnet_ww_ycross ( ycr ) ,

Psw−Psav_ww( ycr , Pnw, lmd , index ) ]

#dec l a r e lambdas

lamb = np . l i n s p a c e (250 , 2500 , num=2500)

#dec l a r e s t o rage arrays

ycross_st = np . z e r o s ( ( 4 , len ( lamb ) ) )

Pnet_ww_st = np . z e r o s ( ( 4 , len ( lamb ) ) )

Psav_ww_st = np . z e ro s ( ( 4 , len ( lamb ) ) )

#beg in f i g u r e

p l t . f i g u r e ( f i g s i z e = [ 5 , 3 . 7 5 ] , dpi=246)

#so l v e system and s t o r e

for i in range (4 ) :

for j in range ( len ( lamb ) ) :

Pnet_ww_st [ i , j ] , Psav_ww_st [ i , j ] , ycross_st [ i , j ] = f s o l v e (

P_solve , [ 0 , 0 , 1 0 ] , a rgs=( i , lamb [ j ] ) )

#pr in t \ hat {W}_{s}^{+0} and lambda_x^{+0} f o r l e a s t power l o s s

i f Pnet_ww_st [ i , j ]>−18:

print (Pnet_ww_st [ i , j ] ,What [ i ] , lamb [ j ] )

#p l o t P_{net ,w} as func t i on o f \lambda_{x}^{+0}

p l t . p l o t ( lamb , Pnet_ww_st [ 0 ] , l s= ’− ’ , l a b e l=’%i ’ % What [ 0 ] )

p l t . p l o t ( lamb , Pnet_ww_st [ 1 ] , l s= ’−. ’ , l a b e l=’%i ’ % What [ 1 ] )

p l t . p l o t ( lamb , Pnet_ww_st [ 2 ] , l s= ’ : ’ , l a b e l=’%i ’ % What [ 2 ] )

p l t . p l o t ( lamb , Pnet_ww_st [ 3 ] , l s= ’−−’ , l a b e l=’%i ’ % What [ 3 ] )

p l t . l egend ( t i t l e=r "$\hat{W}_\mathrm{ s}^{+0}$" )

p l t . x l ab e l ( r ’ $\lambda_{x}^{+0}$ ’ )

p l t . y l ab e l ( r ’$P_\mathrm{net ,w}$ ’ )

p l t . g r i d ( )

p l t . show ( )

#pr in t y_{\ t imes}^{+} and P_{net ,w}

print ( ycross_st )

print (Pnet_ww_st)
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